
On logarithmic paper some real algebraic curves look like smoothed broken lines. Moreover, the broken lines can be obtained as limits of those curves. The corresponding deformation can be viewed as a quantization, in which the broken line is a classical object and the curves are quantum. This generalizes to a new connection between algebraic geometry and the geometry of polyhedra, which is more straight-forward than the other known connections and gives a new insight into constructions used in the topology of real algebraic varieties.
12 pages, 3 figures, Plenary talk at the 3rd ECM, Barcelona, July 10-14, 2000. Sections 2.2, 3.3, 3.4 changed, 2.3 removed to correct consequences of a miscalculation, a reference updated
Mathematics - Algebraic Geometry, FOS: Mathematics, 14P25, 00A99, Algebraic Geometry (math.AG)
Mathematics - Algebraic Geometry, FOS: Mathematics, 14P25, 00A99, Algebraic Geometry (math.AG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 55 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
