
The differential Galois theory for linear differential equations is the Picard- Vessiot Theory. In this theory there is a very nice concept of “integrability” i.e., solutions in closed form: an equation is integrable if the general solution is obtained by a combination of algebraic functions (over the coefficient field), exponentiation of quadratures and quadratures. Furthermore, all information about the integrability of the equation is coded in the identity component of the Galois group: the equation is integrable if, and only if, the identity component of its Galois group is solvable. It is a powerful theory in the sense that, in some favorable cases (for instance, for equations of order 2), it is possible to construct algorithms to determine whether a given linear differential equation is integrable or not.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
