Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Universidade do Minh...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2023 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

SAGA Application for Generalized Estimating Equations Analysis

Authors: Luís Moncaixa; Ana Cristina Braga;

SAGA Application for Generalized Estimating Equations Analysis

Abstract

Logistic regression models seek to identify the influence of different variables/factors on a response variable of interest. These are normally used in the field of medicine as it allows verifying which factors influence the presence of certain pathologies. However, most of these models do not consider the correlation between the variables under study. In order to overcome this problem, GEE (Generalized Estimating Equations) models were developed, which consider the existing correlation in the data, resulting in a more rigorous analysis of the influence of different factors. There are different packages in R that allow analysis using GEE models, however, their use requires some prior knowledge of the R programming language. In order to fill this gap and enable any user to perform analysis through GEE models, a Shiny application called SAGA (Shiny Application for GEE Analysis) was developed. The developed web application is available for use at the following link http://geemodelapp2022.shinyapps.io/Shiny_App. The main purpose of the SAGA application is to develop and analyse GEE models using a dataset selected by the user, where it will be possible to describe all the variables of interest in the development of the model, as well as validate the same models developed through validation by ROC analysis. In addition to the results of the GEE models, shown in the application, the ROC curves of each developed model are also represented.

Country
Portugal
Related Organizations
Keywords

Shiny, Correlated data, Logistic regression, SAGA, GEE

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 3
    download downloads 2
  • 3
    views
    2
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
1
Average
Average
Average
3
2
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!