
We show the following generic result. Whenever a quantum query algorithm in the quantum random-oracle model outputs a classical value $t$ that is promised to be in some tight relation with $H(x)$ for some $x$, then $x$ can be efficiently extracted with almost certainty. The extraction is by means of a suitable simulation of the random oracle and works online, meaning that it is straightline, i.e., without rewinding, and on-the-fly, i.e., during the protocol execution and without disturbing it. The technical core of our result is a new commutator bound that bounds the operator norm of the commutator of the unitary operator that describes the evolution of the compressed oracle (which is used to simulate the random oracle above) and of the measurement that extracts $x$. We show two applications of our generic online extractability result. We show tight online extractability of commit-and-open $��$-protocols in the quantum setting, and we offer the first non-asymptotic post-quantum security proof of the textbook Fujisaki-Okamoto transformation, i.e, without adjustments to facilitate the proof.
Improvement of the bound in the FO reduction, fixed a few minor technical issues, added Appendix A
FOS: Computer and information sciences, Quantum Physics, Computer Science - Cryptography and Security, FOS: Physical sciences, Quantum Physics (quant-ph), Cryptography and Security (cs.CR), 004
FOS: Computer and information sciences, Quantum Physics, Computer Science - Cryptography and Security, FOS: Physical sciences, Quantum Physics (quant-ph), Cryptography and Security (cs.CR), 004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 45 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
