
AbstractAbiotic stresses, such as drought and high temperature, significantly limit wheat yield globally and the intensity and frequency of these stresses are projected to increase in most wheat growing areas. Wheat breeders have incrementally improved the tolerance of cultivars to these stresses through empirical selection in the environment, however new phenotyping and genetic technologies and strategies can significantly improve rates of genetic gain. The integration of new tools and knowledge in the plant breeding process, including better breeding targets, improved choice of genetic diversity, more efficient phenotyping methods and strategy and optimized integration of genetic technologies in the context of several commonly used wheat breeding strategies is discussed. New knowledge and tools that improve the efficiency and speed of wheat improvement can be integrated within the scaffold of most wheat breeding strategies without significant increase in cost.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
