Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2021 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

Quantum Cryptography as an Approach for Teaching Quantum Physics

Authors: Gesche Pospiech;

Quantum Cryptography as an Approach for Teaching Quantum Physics

Abstract

Quantum physics is not only a fundamental physical theory but recently it promises big technological advances in the so-called 2nd quantum revolution, especially in quantum information. These advances rely on the basic research done since about 1980 while looking for a clarification of the fundamentals of quantum physics. The corresponding experiments and insights paved the way for quantum cryptography which is the first development in quantum information leaving the laboratory and going into practice. These developments should have its influence on teaching physics at school level in order to give students insight into a fascinating and fundamental part of modern physics. Herewith they can experience the fundamental notions of quantum physics: non-determinism, superposition and uncertainty. To achieve this goal an approach exploiting recent results of quantum cryptography and combining it intimately with the fundamentals seems promising. In addition such an approach also permits to introduce students with help of Dirac notation to mathematical structures of quantum physics. This might additionally support understanding quantum concepts without retreating to vague metaphors or descriptions. Therefore, teaching quantum information, especially quantum cryptography, at school may serve for motivating students and at the same time impart insight into physics research and the nature of physics. We present a corresponding teaching–learning proposal that was conducted with teacher students.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!