Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2021 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2021
Data sources: zbMATH Open
Foundations and Trends® in Machine Learning
Article . 2021 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 7 versions
addClaim

Tensor Regression

Tensor regression
Authors: Jiani Liu 0002; Ce Zhu; Zhen Long; Yipeng Liu 0001;

Tensor Regression

Abstract

The presence of multidirectional correlations in emerging multidimensional data poses a challenge to traditional regression modeling methods. Traditional modeling methods based on matrix or vector, for example, not only overlook the data’s multidimensional information and lower model performance, but also add additional computations and storage requirements. Driven by the recent advances in applied mathematics, tensor regression has been widely used and proven effective in many fields, such as sociology, climatology, geography, economics, computer vision, chemometrics, and neuroscience. Tensor regression can explore multidirectional relatedness, reduce the number of model parameters and improve model robustness and efficiency. It is timely and valuable to summarize the developments of tensor regression in recent years and discuss promising future directions, which will help accelerate the research process of tensor regression, broaden the research direction, and provide tutorials for researchers interested in high dimensional regression tasks. The fundamentals, motivations, popular algorithms, related applications, available datasets, and software resources for tensor regression are all covered in this monograph. The first part focuses on the key concepts for tensor regression, mainly analyzing existing tensor regression algorithms from the perspective of regression families. Meanwhile, the adopted low rank tensor representations and optimization frameworks are also summarized. In addition, several extensions in online learning and sketching are described. The second part covers related applications, widely used public datasets and software resources, as well as some real-world examples, such as multitask learning, spatiotemporal learning, human motion analysis, facial image analysis, neuroimaging analysis (disease diagnosis, neuron decoding, brain activation, and connectivity analysis) and chemometrics. This survey can be used as a basic reference in tensor-regression-related fields and assist readers in efficiently dealing with high dimensional regression tasks.

Related Organizations
Keywords

FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Linear regression; mixed models, Statistics - Machine Learning, Computer Science - Artificial Intelligence, Research exposition (monographs, survey articles) pertaining to computer science, Multilinear algebra, tensor calculus, Learning and adaptive systems in artificial intelligence, Machine Learning (stat.ML)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Top 10%
Top 10%
Green