
Community detection in graphs often relies on ad hoc algorithms with no clear specification about the node partition they define as the best, which leads to uninterpretable communities. Stochastic block models (SBM) offer a framework to rigorously define communities, and to detect them using statistical inference method to distinguish structure from random fluctuations. In this paper, we introduce an alternative definition of SBM based on edge sampling. We derive from this definition a quality function to statistically infer the node partition used to generate a given graph. We then test it on synthetic graphs, and on the zachary karate club network.
Social and Information Networks (cs.SI), FOS: Computer and information sciences, community, Computer Science - Social and Information Networks, [INFO] Computer Science [cs], stochastic block model, statistical inference
Social and Information Networks (cs.SI), FOS: Computer and information sciences, community, Computer Science - Social and Information Networks, [INFO] Computer Science [cs], stochastic block model, statistical inference
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
