
handle: 20.500.11824/1136
In many Natural Language Processing problems the combination of machine learning and optimization techniques is essential. One of these problems is estimating the effort required to improve, under direct human supervision, a text that has been translated using a machine translation method. Recent developments in this area have shown that Gaussian Processes can be accurate for post-editing effort prediction. However, the Gaussian Process kernel has to be chosen in advance, and this choice in- fluences the quality of the prediction. In this paper, we propose a Genetic Programming algorithm to evolve kernels for Gaussian Processes. We show that the combination of evolutionary optimization and Gaussian Processes removes the need for a-priori specification of the kernel choice, and achieves predictions that, in many cases, outperform those obtained with fixed kernels.
TIN2016-78365-R
effort estimation, evolutionary search, gaussian process, genetic programming, kernels
effort estimation, evolutionary search, gaussian process, genetic programming, kernels
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
