Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Halarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hal
Part of book or chapter of book . 2013
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-1-...
Part of book or chapter of book . 2012 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Discovery
Part of book or chapter of book . 2013
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Detecting p53 Isoforms at Protein Level

Authors: Marcel, Virginie; Khoury, Marie; Fernandes, Kenneth; Diot, Alexandra; Lane, David; Bourdon, Jean-Christophe;

Detecting p53 Isoforms at Protein Level

Abstract

The human p53 protein isoforms are expressed in several cell lines and modulate p53 tumor suppressor -activity, mainly through modulation of gene expression (1-4). Thus, identifying the pattern of p53 isoforms expression in cell lines is a key step for future studies of the p53 network (5). At the moment, the detection of p53 protein isoforms is based on the use of a panel of antibodies allowing their identification by comparing their molecular weights and their detection pattern by different antibodies (6). Here, classical protocols supplemented with technical know-how are described to detect p53 protein isoforms at protein level by Western blotting and immunoprecipitation. Furthermore, a simple method to study the impact of p53 protein isoforms on p53 transcriptional activity through luciferase reporter gene assays is provided.

Related Organizations
Keywords

Transcriptional Activation, 570, Blotting, Western, 610, Gene Expression, Antibodies, Western blotting, Cell Line, Genes, Reporter, Animals, Humans, Immunoprecipitation, Protein Isoforms, Animal model, Protein detection, Luciferases, Zebrafish, Luciferase reporter gene assays, p53 tumor suppressor protein, p53 protein isoforms, [SDV] Life Sciences [q-bio], p53 protein isoforms Antibodies Western blotting Immunoprecipitation Luciferase reporter gene assays Protein detection p53 tumor suppressor protein Animal model, Models, Animal, Drosophila, Tumor Suppressor Protein p53

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%
Green