
pmid: 30838586
3D analysis of animal or human whole teeth and alveolar bone can be performed with high sensitivity in a nondestructive manner by microcomputed tomography. Here we describe the protocols to be followed for the most common applications in the developmental studies of dental and craniofacial tissues. Emphasis is placed on the basis of choosing settings for image acquisition, such as voxel resolution (Fig. 1), or beam energy (Fig. 2) and for processing, such as segmentation method (Fig. 3), parameters. The limitations to take into account for optimal efficiency and image quality are also explained.
Mandible, X-Ray Microtomography, Specimen Handling, Mice, Imaging, Three-Dimensional, Image Processing, Computer-Assisted, Animals, Humans, Odontogenesis, Dental Enamel, Tooth
Mandible, X-Ray Microtomography, Specimen Handling, Mice, Imaging, Three-Dimensional, Image Processing, Computer-Assisted, Animals, Humans, Odontogenesis, Dental Enamel, Tooth
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
