
pmid: 30415340
Tomato is both an important food crop and serves as a model plant species that is used for various research investigations including understanding gene function. Transformation is commonly utilized to facilitate these investigations in combination with all the extensive genetic and genomic resources available for tomato. The transformation protocol routinely used in our laboratory has been applied to many different tomato genotypes and relies on Agrobacterium tumefaciens infection of young cotyledon sections. We have used vector systems for overexpression, RNA interference for gene silencing, and CRISPR/Cas9 for genome editing. Vectors used to design gene constructs contained selectable marker genes that conferred resistance to kanamycin, hygromycin, and the herbicide component, bialaphos. The protocol we follow for Agrobacterium-mediated transformation of both cultivated and wild species of tomato is detailed in this chapter.
Gene Editing, Genetic Vectors, Plants, Genetically Modified, Plant Roots, Tissue Culture Techniques, Transformation, Genetic, Solanum lycopersicum, Agrobacterium tumefaciens, Seeds, Cotyledon, Plant Shoots, Plasmids
Gene Editing, Genetic Vectors, Plants, Genetically Modified, Plant Roots, Tissue Culture Techniques, Transformation, Genetic, Solanum lycopersicum, Agrobacterium tumefaciens, Seeds, Cotyledon, Plant Shoots, Plasmids
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 104 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
