
By now we know Euler’s number \(\mathrm{e} =\mathrm{ e}^{1}\) quite well. In this chapter we define the exponential function \(\mathrm{e}^{x}\) for any x ∈ R, and its inverse the natural logarithmic function ln(x), for x > 0. (In the first section of the chapter we take a concise approach to the exponential function; in the second section we do things carefully.) These functions enable us to extend many of our previous results to allow for real exponents. For example, we obtain the Power Rule for real exponents, we extend Bernoulli’s Inequality, and we obtain a more strapping version of the AGM Inequality. We also meet the Logarithmic Mean, the Harmonic series and its close relatives the Alternating Harmonic series and p-series, and Euler’s constant \(\upgamma\).
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
