Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Inductively Coupled Plasmas (ICPs)

Authors: Jane P. Chang; Francis F. Chen;

Inductively Coupled Plasmas (ICPs)

Abstract

Inductively Coupled Plasmas are so called because the RF electric field is induced in the plasma by an external antenna. ICPs have two main advantages: 1) no internal electrodes are needed as in capacitively coupled systems, and 2) no dc magnetic field is required as in ECR reactors. These benefits make ICPs probably the most common of plasma tools. These devices come in many different configurations, categorized in Fig. 10. In the simplest form, the antenna consists of one or several turns of water-cooled tubing wrapped around a ceramic cylinder, which forms the sidewall of the plasma chamber. Fig. 2 shows two commercial reactor of this type. The spiral coil acts like an electromagnet, creating an RF magnetic field inside the chamber. This field, in turn generates an RF electric field by Faraday’s Law: $$ \nabla \times E = {{ - dB} \mathord{\left/ {\vphantom {{ - dB} {dt \equiv }}} \right. \kern-\nulldelimiterspace} {dt \equiv }}\dot B, $$ (3) B-dot being a term we will use to refer to the RF magnetic field. This field is perpendicular to the antenna current, but the E-field is more or less parallel to the antenna current and opposite to it. Thus, with a slinky-shaped antenna, the E-field in the plasma would be in the azimuthal direction.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!