Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-1-...
Part of book or chapter of book . 2014 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Electropermeabilization of the Cell Membrane

Authors: Justin, Teissie;

Electropermeabilization of the Cell Membrane

Abstract

Membrane electropermeabilization is the observation that the permeability of a cell membrane can be transiently increased when a micro-millisecond external electric field pulse is applied on a cell suspension or on a tissue. Applicative aspects for the transfer of foreign molecules (macromolecules) into the cytoplasm are routinely used. But only a limited knowledge about what is really occurring in the cell and its membranes at the molecular levels is available. This chapter is a critical attempt to report the present state of the art and to point out some of the still open problems. The experimental facts associated to membrane electropermeabilization are firstly reported. They are valid on biological and model systems. Secondly, soft matter approaches give access to the bioelectrochemical description of the thermodynamical constraints supporting the destabilization of simplified models of the biological membrane. It is indeed described as a thin dielectric leaflet, where a molecular transport takes place by electrophoresis and then diffusion. This naïve approach is due to the lack of details on the structural aspects affecting the living systems as shown in a third part. Membranes are part of the cell machinery. The critical property of cells as being an open system from the thermodynamical point of view is almost never present. Computer simulations are now contributing to our knowledge on electropermeabilization. The last part of this chapter is a (very) critical report of all the efforts that have been performed. The final conclusion remains that we still do not know all the details on the reversible structural and dynamical alterations of the cell membrane (and cytoplasm) supporting its electropermeabilization. We have a long way in basic and translational researches to reach a pertinent description.

Keywords

Cell Membrane Permeability, Electroporation, Cell Membrane, Biological Transport, Computer Simulation, Membrane Potentials

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!