Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-1-...
Book . 2013 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Astrostatistical Challenges for the New Astronomy

Astrostatistical Challenges for the New Astronomy

Abstract

Joseph Hilbe, Jet Propulsion Laboratory and Arizona State University, Astrostatistics: A brief history and view to the future.- Thomas Loredo, Cornell Univ, Bayesian astrostatistics: A backward look to the future.- Stefano Andreon, INAF-Osservatorio Astronomico di Brera, Italy, Understanding better (some) astronomical data using Bayesian methods.- Martin Kunz, Institute for Theoretical Physics, Univ of Geneva, BEAMS: separating the wheat from the chaff in supernova analysis.- Benjamin Wandelt, Institut d'Astrophysique de Paris, Universite Pierre et Marie Curie, France, Cosmostatistics.- Roberto Trotta, Astrophysics Group, Dept of Physics, Imperial College London (with Farhan Feroz (Cambridge), Mike Hobson (Cambridge), and Roberto Ruiz de Austri (Univ of Valencia, Spain), Recent advances in Bayesian inference in cosmology and astroparticle physics thanks to the Multinest Algorithm.- Phillip Gregory, Department of Astronomy, Univ of British Columbia, Canada, Extrasolar planets via Bayesian model fitting.- Marc Henrion, Dept of Mathematics, Imperial College, London, UK (with Daniel Mortlock (Imperial), Axel Gandy (Imperial), and David J. Hand (Imperial)), Subspace methods for anomaly detection in high dimensional astronomical databases.- Asis Kumar Chattopadhyay, Dept of Statistics, Univ of Calcutta, India (with Tanuka Chattyopadhyay, Tuli De, and Saptarshi Mondal), Independent Component Analysis for dimension reduction classification: Hough transform and CASH Algorithm.- Marisa March, Astrophysics Group, Dept of Physics, Imperial College London (with Roberto Trotta), Improved cosmological constraints from a Bayesian hierarchical model of supernova type Ia data

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!