
We first review the introduction of star products in connection with deformations of Poisson brackets and the various cohomologies that are related to them. Then we concentrate on what we have called ``closed star products" and their relations with cyclic cohomology and index theorems. Finally we shall explain how quantum groups, especially in their recent topological form, are in essence examples of star products.
16 pages
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), Mathematics - Quantum Algebra, FOS: Mathematics, Quantum Algebra (math.QA), FOS: Physical sciences
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), Mathematics - Quantum Algebra, FOS: Mathematics, Quantum Algebra (math.QA), FOS: Physical sciences
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
