Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-1-...
Part of book or chapter of book . 2020 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Bacterial Differential Expression Analysis Methods

Authors: Sagar, Utturkar; Asela, Dassanayake; Shilpa, Nagaraju; Steven D, Brown;

Bacterial Differential Expression Analysis Methods

Abstract

RNA-Seq examines global gene expression to provide insights into cellular processes, and it can be particularly informative when comparing contrasting physiological states or strains. Although relatively routine in many laboratories, there are many steps involved in performing a transcriptomics experiment to ensure representative and high-quality results are generated for analysis. In this chapter, we present the application of widely used bioinformatic methodologies to assess, trim, and filter RNA-seq reads for quality using FastQC and Trim Galore, respectively. High-quality reads are mapped using Bowtie2 and differentially expressed genes across different groups were estimated using the DEseq2 R-Bioconductor package. In addition, we describe the various steps to perform the sample-wise data quality assessment by generating exploratory plots through the DESeq2 package. Simple steps to calculate the significant differentially expressed genes, up- and down-regulated genes, and exporting the data and images are also included. A Venn diagram is a useful method to compare the differentially expressed genes across various comparisons and steps to generate the Venn diagram from DESeq2 results are provided. Finally, the output from DESeq2 is compared to published results from EdgeR. The Clostridium autoethanogenum data are published and publicly available.

Keywords

Quality Control, Principal Component Analysis, Gene Expression Profiling, Gene Expression Regulation, Bacterial, Reference Standards, Data Accuracy, Cluster Analysis, RNA-Seq, Genome, Bacterial, Software

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!