Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Galway...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1007/978-0-...
Part of book or chapter of book . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hydrocarbon Fluid Inclusion Fluorescence: A Review

Authors: Blamey, Nigel J. F.; Ryder, Alan G.;

Hydrocarbon Fluid Inclusion Fluorescence: A Review

Abstract

Geological fluid inclusions are small voids that can contain a variety of liquids which are often found in natural minerals and rocks. Typically they are less than 10 micrometres in size that host fossil fluids which existed when the minerals grew or healed after fracture. Of particular interest to the petroleum industry are inclusions that contain hydrocarbon fluids, which originated from petroleum that once migrated through the rocks before becoming trapped. These hydrocarbon-bearing fluid inclusions (HCFI) are useful for learning about the processes, fluid compositions, temperatures and pressure conditions in geologic systems such as the migration of hydrocarbon fluids in petroleum basins. The accurate characterisation of the petroleum fluid entrapped in inclusions presents the analyst with considerable challenges. HCFI samples are very valuable (usually obtained from core drilling) and thus a non-contact, non-destructive, analytical method is required. The small size of HCFI necessitates the use of microscopy based techniques while spectroscopic methods are needed to characterise the chemical composition. Fluorescence based methods offer the best combination of high sensitivity, diagnostic potential, and relatively uncomplicated instrumentation. It is the fluorescence of HCFI and the spectroscopic methods employed for their analysis which is the focus of this review. Specific sections focus on the description of HCFI, petroleum fluorescence, and microscopic techniques. The review and discussion focuses primarily on advances and studies reported in the literature from 1980 s onwards, and outlines some of the issues that need to be addressed to make fluorescence methods more reproducible and quantitative for HCFI analysis.

Related Organizations
Keywords

Hydrocarbon, Geology, FOS: Earth and related environmental sciences, Fluorescence, Fluid inclusions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Top 10%
Average
Green