
doi: 10.1007/400_2008_28
pmid: 19132320
In many species, the sense of smell plays important roles in locating food, detecting predators, navigating, and communicating social information. The olfactory system has evolved complex repertoires of odor receptors (ORs) to fulfill these functions. Through computational data mining, OR repertoires of multiple species were identified, revealing a surprisingly large OR gene family in rodents and evolutionary fluctuation among different organisms. Characteristics of OR genes were explored through computational and experimental methods, showing a complicated gene structure and special genomic distribution. Utilizing high-throughput OR microarrays, expression profiles of the mouse and human OR repertoire were examined, their olfactory functions verified, and their zonal, ectopic and developmental expression determined. Variation in human smelling abilities results from different functional OR repertoires, variable expressional levels and polymorphisms in the copy number of the OR genes. These genomic approaches have both provided new data and generated new questions.
Gene Expression Profiling, Animals, Cluster Analysis, Humans, Genomics, Receptors, Odorant, Phylogeny
Gene Expression Profiling, Animals, Cluster Analysis, Humans, Genomics, Receptors, Odorant, Phylogeny
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 29 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
