<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Many top-down Inductive Logic Programming systems use a greedy, covering approach to construct hypotheses. This paper presents an alternative, cautious approach, known as cautious induction. We conjecture that cautious induction can allow better hypotheses to be found, with respect to some hypothesis quality criteria. This conjecture is supported by the presentation of an algorithm called OILS, and with a complexity analysis and empirical comparison of OILS with the Progol system. The results are encouraging and demonstrate the applicability of cautious induction to problems with noisy datasets, and to problems which require large, complex hypotheses to be learnt.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |