
As databases grow in size and complexity the task of adding value to the wealth of data becomes difficult. Data mining has emerged as the technology to add value to enormous databases by finding new and important snippets (or nuggets) of knowledge. With large training sets, however, extremely large collections of nuggets are being extracted, leading to much “fools gold” amongst which to fossick for the real gold. Attention is now being directed towards the problem of how to better focus on the most precious nuggets. This paper presents the hot spots methodology, adopting a multi-strategy and interactive approach to help focus on the important nuggets. The methodology first performs data mining and then explores the resulting models to find the important nuggets contained therein. This approach is demonstrated in insurance and fraud applications.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 27 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
