
We consider the problem of recognizing graphs containing an f-factor (for any constant f) over the class of partial k-tree complements. We also consider a variation of this problem that only recognizes graphs containing a connected f-factor: this variation generalizes the Hamiltonian circuit problem. We show that these problems have O(n) algorithms for partial k-tree complements (on n vertices); we assume that the Θ(n2) edges of such a graph are specified by representing the O(n) edges of its complement. As a preliminary result of independent interest, we demonstrate a logical language in which, if a graph property can be expressed over the class of partial k-tree complements, then those graphs that satisfy the property can be recognized in O(n) time.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
