
We introduce new techniques for studying the structure of partial k-trees. In particular, we show that the complements of partial k-trees provide an intuitively-appealing characterization of partial k-tree obstructions. We use this characterization to obtain a lower bound of 2Ω(k log k) on the number of obstructions, significantly improving the previously best-known bound of 2Ω(√k). Our techniques have the added advantage of being considerably simpler than those of previous authors.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
