Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/164_20...
Part of book or chapter of book . 2016 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Muscarinic Receptor Antagonists

Authors: Maria Gabriella Matera; Mario Cazzola;

Muscarinic Receptor Antagonists

Abstract

Parasympathetic activity is increased in patients with chronic obstructive pulmonary disease (COPD) and asthma and appears to be the major reversible component of airway obstruction. Therefore, treatment with muscarinic receptor antagonists is an effective bronchodilator therapy in COPD and also in asthmatic patients. In recent years, the accumulating evidence that the cholinergic system controls not only contraction by airway smooth muscle but also the functions of inflammatory cells and airway epithelial cells has suggested that muscarinic receptor antagonists could exert other effects that may be of clinical relevance when we must treat a patient suffering from COPD or asthma. There are currently six muscarinic receptor antagonists licenced for use in the treatment of COPD, the short-acting muscarinic receptor antagonists (SAMAs) ipratropium bromide and oxitropium bromide and the long-acting muscarinic receptor antagonists (LAMAs) aclidinium bromide, tiotropium bromide, glycopyrronium bromide and umeclidinium bromide. Concerns have been raised about possible associations of muscarinic receptor antagonists with cardiovascular safety, but the most advanced compounds seem to have an improved safety profile. Further beneficial effects of SAMAs and LAMAs are seen when added to existing treatments, including LABAs, inhaled corticosteroids and phosphodiesterase 4 inhibitors. The importance of tiotropium bromide in the maintenance treatment of COPD, and likely in asthma, has spurred further research to identify new LAMAs. There are a number of molecules that are being identified, but only few have reached the clinical development.

Keywords

Muscarinic Antagonists, Asthma, Pulmonary Disease, Chronic Obstructive, Adrenal Cortex Hormones, Drug Discovery, Animals, Humans, Drug Therapy, Combination, Phosphodiesterase 4 Inhibitors, Adrenergic beta-2 Receptor Agonists

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Average
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?