
The face pattern is described by pairs of template-based histogram and Fisher projection orientation under the paradigm of AdaBoost learning in this paper. We assume that a set of templates are available first. To avoid making strong assumptions about distributional structure while still retaining good properties for estimation, the classical statistical model, histogram, is used to summarize the response of each template. By introducing a novel “integral histogram image”, we can compute histograms rapidly. Then we turn to Fisher linear discriminant for each template to project histograms from d–dimensional to one-dimensional subspace. Best features, used to describe face pattern, are selected by AdaBoost learning. The results of preliminary experiments demonstrate that the selected features are much more powerful to represent the face pattern than the simple rectangle features used by Viola and Jones and some variants.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
