Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Durham Research Onli...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Durham Research Online
Part of book or chapter of book . 2005 . Peer-reviewed
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://dro.dur.ac.uk/658/1/658...
Part of book or chapter of book
Data sources: UnpayWall
https://doi.org/10.1007/115234...
Part of book or chapter of book . 2005 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dynamic Diffusion Load Balancing

Authors: Berenbrink, P.; Friedetzky, T.; Martin, R.;

Dynamic Diffusion Load Balancing

Abstract

We consider the problem of dynamic load balancing in arbitrary (connected) networks on n nodes. Our load generation model is such that during each round, n tasks are generated on arbitrary nodes, and then (possibly after some balancing) one task is deleted from every non-empty node. Notice that this model fully saturates the resources of the network in the sense that we generate just as many new tasks per round as the network is able to delete. We show that even in this situation the system is stable, in that the total load remains bounded (as a function of n alone) over time. Our proof only requires that the underlying “communication” graph be connected. (It of course also works if we generate less than n new tasks per round, but the major contribution of this paper is the fully saturated case.) We further show that the upper bound we obtain is asymptotically tight (up to a moderate multiplicative constant) by demonstrating a corresponding lower bound on the system load for the particular example of a linear array (or path). We also show some simple negative results (i.e., instability) for work-stealing based diffusion-type algorithms in this setting.

Related Organizations
Keywords

Algorithm, Load generation model., 000, Network, Load generation model

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Green
Related to Research communities