
Inbreeding depression, accumulation and loss of deleterious mutations, loss of genetic variation in small populations, genetic adaptation to captivity and its effect on reintroduction success, and outbreeding depression are reviewed. The impact of genetic factors in endangerment and extinction has been underestimated in some recent publications. Inbreeding depression in wildlife and in the field has been clearly established, while its impact has been greatly underestimated. The size of populations where genetic factors become important is higher than previously recognized, as Ne/N ratios average 0.11. Purging effects have been overestimated as a mechanism for eliminating deleterious alleles in small populations. The impact of loss of genetic variation in increasing the susceptibility of populations to environmental stochasticity and catastrophes has generally been ignored. Consequently, extinctions are often attributed to "nongenetic" factors when these may have interacted with genetic factors to cause extinction.
Animals, Laboratory, Mutation, Adaptation, Biological, Genetics, Animals, Breeding, Forecasting
Animals, Laboratory, Mutation, Adaptation, Biological, Genetics, Animals, Breeding, Forecasting
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 972 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
