Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Mathemati...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Mathematical Analysis and Applications
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Mathematical Analysis and Applications
Article . 2001
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Mathematical Analysis and Applications
Article . 2001 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2001
Data sources: zbMATH Open
versions View all 4 versions
addClaim

About Non-differentiable Functions

About non-differentiable functions
Authors: Ben Adda, Fayçal; Cresson, Jacky;

About Non-differentiable Functions

Abstract

\textit{K. M. Kolwankar} and \textit{A. D. Gangal} [``Fractional differentiability of nowhere differentiable functions and dimensions'', Chaos, 6, No.~4, 505-513 (1996; Zbl 1055.26504)] introduced a certain ``localization'' \(d^\alpha f(x)\) of the Riemann-Liouville fractional derivative to study the local behaviour of nowhere differentiable functions. The authors present a development of this notion, one of the main statements being the formula \[ d^\alpha f(x)= \Gamma(1+\alpha)\lim_{ t\to x}\frac{f(t)-f(x)}{|t-x|^\alpha} \tag{1} \] (under the assumption that \(d^\alpha f(x)\) exists) and its consequences. Reviewer's remarks. 1. The construction \(d^\alpha f(x)\) is equal to zero for any nice function, which roughly speaking, behaves locally better than a Hölder function of order \(\lambda> \alpha\) and is equal to infinity at all points where it has ``bad'' behaviour, worse than a Hölder function of order \(\lambdax. \] From (2), in particular, it follows that \(d^\alpha f(x)\equiv 0\) for any function whose continuity modulus \(\omega(f,\delta)\) satisfies the conditions that \(\lim_{\delta\to 0}\frac{\omega(f,\delta)}{\delta^\alpha}=0,\) and \(\frac{\omega(f,\delta)}{\delta^{1+\alpha}}\) is integrable.

Keywords

Nondifferentiability (nondifferentiable functions, points of nondifferentiability), discontinuous derivatives, nowhere differentiable functions, Riemann–Liouville fractional operators, Fractional derivatives and integrals, Applied Mathematics, local behaviour, fractional calculus, Analysis, irregular functions

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    95
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
95
Top 10%
Top 1%
Average
hybrid