
AbstractIn this paper we look at the theory of reproducing kernels for spaces of functions in a Clifford algebra R0,n. A first result is that reproducing kernels of this kind are solutions to a minimum problem, which is a non-trivial extension of the analogous property for real and complex valued functions. In the next sections we restrict our attention to Szegö and Bergman modules of monogenic functions. The transformation property of the Szegö kernel under conformal transformations is proved, and the Szegö and Bergman kernels for the half space are calculated.
Applied Mathematics, Analysis
Applied Mathematics, Analysis
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
