
A method for generating structured meshes from a given vector-field is described. This method is based on a weighted variational principle that minimizes a least squares fit to the inverse of a scaled Jacobian matrix derived from the given vector-field. The resulting grid generator is a weighted form of the earlier known Laplace grid generator equation. The explanation of the method presented is not precise enough, it has some heuristic components. The theory of the method is valid also for the three-dimensional case but the numerical examples are presented only in 2D.
vector-field, grid generator, numerical examples, grid generation, least squares fit, Laplace grid generator equation, Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
vector-field, grid generator, numerical examples, grid generation, least squares fit, Laplace grid generator equation, Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 37 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
