
AbstractWe study approximation of multivariate functions defined over Rd. We assume that all rth order partial derivatives of the functions considered are continuous and uniformly bounded. Approximation algorithms U(f) only use the values of f or its partial derivatives up to order r. We want to recover the function f with small error measured in a weighted Lq norm with a weight function ρ. We study the worst case (information) complexity which is equal to the minimal number of function and derivative evaluations needed to obtain error ε. We provide necessary and sufficient conditions in terms of the weight ρ and the parameters q and r for the weighted approximation problem to have finite complexity. We also provide conditions guaranteeing that the complexity is of the same order as the complexity of the classical approximation problem over a finite domain. Since the complexity of the weighted integration problem is equivalent to the complexity of the weighted approximation problem with q=1, the results of this paper also hold for weighted integration. This paper is a continuation of [7], where weighted approximation over R was studied.
Statistics and Probability, Mathematics(all), Numerical Analysis, Algebra and Number Theory, Control and Optimization, worst case complexity, Applied Mathematics, weighted multivariate approximation, integration, Analysis
Statistics and Probability, Mathematics(all), Numerical Analysis, Algebra and Number Theory, Control and Optimization, worst case complexity, Applied Mathematics, weighted multivariate approximation, integration, Analysis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 41 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
