
Let \(R = K[t_1, \ldots , t_d]\) be the polynomial ring in \(d\) indeterminates over a field \(K\). If \(G\) is a bipartite graph on the vertex set \(\{ 1, \ldots , d \}\), define \(K[G]\) to be the subalgebra of \(R\) generated by all monomials \(t_i t_j\) such that \(\{ i,j \}\) is an edge of \(G\). It is shown that if every \(n\)-cycle \((n \geq 6)\) has a chord, then \(K[G]\) is Koszul.
Graphs and linear algebra (matrices, eigenvalues, etc.), Applied Mathematics, bipartite graph, Paths and cycles, Koszul algebra
Graphs and linear algebra (matrices, eigenvalues, etc.), Applied Mathematics, bipartite graph, Paths and cycles, Koszul algebra
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 49 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
