
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script> Copyright policy )
 Copyright policy )doi: 10.1002/yea.2929
pmid: 23108915
AbstractCandida famata (Candida flareri) belongs to the group of so‐called ‘flavinogenic yeasts’, capable of riboflavin oversynthesis under condition of iron starvation. Some strains of C. famata belong to the most flavinogenic organisms known and were used for industrial production of riboflavin for a long time in the USA. C. famata is characterized by high salt tolerance, growing at NaCl concentrations of up to 2.5 m. Development of basic tools for the metabolic engineering of C. famata, such as a transformation system, selective markers, insertional mutagenesis, a reporter system and others, are described. The developed tools were used for cloning and identification of structural and regulatory genes of riboflavin synthesis. The construction of improved yeast strains producing riboflavin, FMN and FAD, based on the industrial riboflavin‐producing strain dep8 and its non‐reverting analogue AF4, is also described. Copyright © 2012 John Wiley & Sons, Ltd.
Saline Solution, Hypertonic, Metabolic Engineering, Iron, Riboflavin, Metabolic Networks and Pathways, United States, Biotechnology, Candida
Saline Solution, Hypertonic, Metabolic Engineering, Iron, Riboflavin, Metabolic Networks and Pathways, United States, Biotechnology, Candida
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 29 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% | 
