Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Wiley Interdisciplin...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Wiley Interdisciplinary Reviews Systems Biology and Medicine
Article . 2014 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

Large scale molecular simulations of nanotoxicity

Authors: Camilo A, Jimenez-Cruz; Seung-gu, Kang; Ruhong, Zhou;

Large scale molecular simulations of nanotoxicity

Abstract

The widespread use of nanomaterials in biomedical applications has been accompanied by an increasing interest in understanding their interactions with tissues, cells, and biomolecules, and in particular, on how they might affect the integrity of cell membranes and proteins. In this mini‐review, we present a summary of some of the recent studies on this important subject, especially from the point of view of large scale molecular simulations. The carbon‐based nanomaterials and noble metal nanoparticles are the main focus, with additional discussions on quantum dots and other nanoparticles as well. The driving forces for adsorption of fullerenes, carbon nanotubes, and graphene nanosheets onto proteins or cell membranes are found to be mainly hydrophobic interactions and the so‐called π–π stacking (between aromatic rings), while for the noble metal nanoparticles the long‐range electrostatic interactions play a bigger role. More interestingly, there are also growing evidences showing that nanotoxicity can have implications in de novo design of nanomedicine. For example, the endohedral metallofullerenol Gd@C82(OH)22 is shown to inhibit tumor growth and metastasis by inhibiting enzyme MMP‐9, and graphene is illustrated to disrupt bacteria cell membranes by insertion/cutting as well as destructive extraction of lipid molecules. These recent findings have provided a better understanding of nanotoxicity at the molecular level and also suggested therapeutic potential by using the cytotoxicity of nanoparticles against cancer or bacteria cells. WIREs Syst Biol Med 2014, 6:265–279. doi: 10.1002/wsbm.1271This article is categorized under: Biological Mechanisms > Chemical Biology Analytical and Computational Methods > Computational Methods

Related Organizations
Keywords

Models, Molecular, Nanotubes, Carbon, Systems Biology, Carbon, Nanostructures, Mice, Matrix Metalloproteinase 9, Neoplasms, Animals, Humans, Nanoparticles, Nanotechnology, Computer Simulation, Graphite, Adsorption, Fullerenes, Neoplasm Metastasis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!