Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEJ Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEJ Transactions on Electrical and Electronic Engineering
Article . 2013 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

Flywheel‐based AC cache power for stand‐alone power systems

Authors: Miao‐Miao Cheng; Shuhei Kato; Hideo Sumitani; Ryuichi Shimada;

Flywheel‐based AC cache power for stand‐alone power systems

Abstract

AbstractStand‐alone power systems (SPS) are attracting more and more interest with the global move toward distributed generation (DG). Without strong support from the power grid, they suffer from poor load‐following capability at varying loads. A cache power that has fast response and high energy efficiency is demanded. As a solution, this paper provides an AC power technology based on flywheel energy storage. Different from the other DC generation technologies such as electric double layer capacitor (EDLC) or superconducting magnetic energy storage (SMES), the proposed flywheel system generates AC power and therefore can be directly connected to the power line without any power semiconductors. Furthermore, the proposed technology realizes power in/out automatically in response to the frequency/voltage variation of the power line. Therefore, this system has the advantages of robustness, simplicity, and fast response. Besides, by getting rid of power semiconductors, the proposed flywheel system has a good overload capability as high as two to three times. We prove by simulation and experimentation the validity and effectiveness of the proposed technology to provide cache power for stand‐alone power systems. © 2013 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!