
This article proposes multinomial probit Bayesian additive regression trees (MPBART) as a multinomial probit extension of Bayesian additive regression trees. MPBART is flexible to allow inclusion of predictors that describe the observed units as well as the available choice alternatives. Through two simulation studies and four real data examples, we show that MPBART exhibits very good predictive performance in comparison with other discrete choice and multiclass classification methods. To implement MPBART, theRpackagempbartis freely available from CRAN repositories. Copyright © 2016 John Wiley & Sons, Ltd.
machine learning, Bayesian methods, classification, Statistics, statistical computing
machine learning, Bayesian methods, classification, Statistics, statistical computing
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 22 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
