
doi: 10.1002/sim.7194
pmid: 27976418
In matched case‐crossover studies, it is generally accepted that the covariates on which a case and associated controls are matched cannot exert a confounding effect on independent predictors included in the conditional logistic regression model. This is because any stratum effect is removed by the conditioning on the fixed number of sets of the case and controls in the stratum. Hence, the conditional logistic regression model is not able to detect any effects associated with the matching covariates by stratum. However, some matching covariates such as time often play an important role as an effect modification leading to incorrect statistical estimation and prediction. Therefore, we propose three approaches to evaluate effect modification by time. The first is a parametric approach, the second is a semiparametric penalized approach, and the third is a semiparametric Bayesian approach. Our parametric approach is a two‐stage method, which uses conditional logistic regression in the first stage and then estimates polynomial regression in the second stage. Our semiparametric penalized and Bayesian approaches are one‐stage approaches developed by using regression splines. Our semiparametric one stage approach allows us to not only detect the parametric relationship between the predictor and binary outcomes, but also evaluate nonparametric relationships between the predictor and time. We demonstrate the advantage of our semiparametric one‐stage approaches using both a simulation study and an epidemiological example of a 1‐4 bi‐directional case‐crossover study of childhood aseptic meningitis with drinking water turbidity. We also provide statistical inference for the semiparametric Bayesian approach using Bayes Factors. Copyright © 2016 John Wiley & Sons, Ltd.
Cross-Over Studies, Models, Statistical, Time Factors, Drinking Water, matched case-control study, Bayes Theorem, regression splines, Applications of statistics to biology and medical sciences; meta analysis, temporal variation, Logistic Models, Nephelometry and Turbidimetry, Case-Control Studies, stratum, Humans, varying coefficient model, Meningitis, Aseptic, Child, conditional logistic regression
Cross-Over Studies, Models, Statistical, Time Factors, Drinking Water, matched case-control study, Bayes Theorem, regression splines, Applications of statistics to biology and medical sciences; meta analysis, temporal variation, Logistic Models, Nephelometry and Turbidimetry, Case-Control Studies, stratum, Humans, varying coefficient model, Meningitis, Aseptic, Child, conditional logistic regression
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
