Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Statistics in Medici...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Statistics in Medicine
Article . 2016 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The bivariate combined model for spatial data analysis

Authors: Andrew B. Lawson; Thomas Neyens; Russell S. Kirby; Christel Faes; Christel Faes;

The bivariate combined model for spatial data analysis

Abstract

To describe the spatial distribution of diseases, a number of methods have been proposed to model relative risks within areas. Most models use Bayesian hierarchical methods, in which one models both spatially structured and unstructured extra‐Poisson variance present in the data. For modelling a single disease, the conditional autoregressive (CAR) convolution model has been very popular. More recently, a combined model was proposed that ‘combines’ ideas from the CAR convolution model and the well‐known Poisson‐gamma model. The combined model was shown to be a good alternative to the CAR convolution model when there was a large amount of uncorrelated extra‐variance in the data. Less solutions exist for modelling two diseases simultaneously or modelling a disease in two sub‐populations simultaneously. Furthermore, existing models are typically based on the CAR convolution model. In this paper, a bivariate version of the combined model is proposed in which the unstructured heterogeneity term is split up into terms that are shared and terms that are specific to the disease or subpopulation, while spatial dependency is introduced via a univariate or multivariate Markov random field. The proposed method is illustrated by analysis of disease data in Georgia (USA) and Limburg (Belgium) and in a simulation study. We conclude that the bivariate combined model constitutes an interesting model when two diseases are possibly correlated. As the choice of the preferred model differs between data sets, we suggest to use the new and existing modelling approaches together and to choose the best model via goodness‐of‐fit statistics. Copyright © 2016 John Wiley & Sons, Ltd.

Keywords

Risk, Spatial Analysis, Georgia, Models, Statistical, 330, overdispersion, disease mapping, multivariate conditional autoregressive model, Bayes Theorem, 310, 510, bivariate modelling, Belgium, Humans, correlated gamma random effect

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Average
bronze