
pmid: 3358023
AbstractThis paper concerns continuation ratio models for multinomial responses. These are conditional probabilities used in logit models to define the dependence of the multinomial proportions on explanatory variables and unknown parameters. A distinctive feature of these models is that if one models the various continuation ratios separately, then the resulting estimates and test statistics are asymptotically independent. This allows the partitioning of likelihood ratio statistics and the search for effects in specific categories of an ordinal response variable. Models that use the same parameters for different continuation ratios are suitable for estimating more global differences. The fitting of these models to actual data is illustrated, including an example from a pharmaceutical study. The results show that different models are suitable for modelling complementary sorts of differences between multinomial response distributions.
Adult, Male, Analgesics, Pain, Postoperative, Educational Status, Humans, Regression Analysis, Models, Theoretical, Probability
Adult, Male, Analgesics, Pain, Postoperative, Educational Status, Humans, Regression Analysis, Models, Theoretical, Probability
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 60 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
