
doi: 10.1002/rsa.20912
Let Ωq=Ωq(H) denote the set of proper [q]‐colorings of the hypergraph H. Let Γq be the graph with vertex set Ωq where two colorings σ,τ are adjacent iff the corresponding colorings differ in exactly one vertex. We show that if H=Hn,m;k, k ≥ 2, the random k‐uniform hypergraph with V=[n] and m=dn/k hyperedges then w.h.p. Γq is connected if d is sufficiently large and . This is optimal up to the first order in d. Furthermore, with a few more colors, we find that the diameter of Γq is O(n) w.h.p., where the hidden constant depends on d. So, with this choice of d,q, the natural Glauber dynamics Markov Chain on Ωq is ergodic w.h.p.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
