
We investigate the asymptotic structure of a random perfect graph Pn sampled uniformly from the set of perfect graphs on vertex set . Our approach is based on the result of Prömel and Steger that almost all perfect graphs are generalised split graphs, together with a method to generate such graphs almost uniformly. We show that the distribution of the maximum of the stability number and clique number is close to a concentrated distribution L(n) which plays an important role in our generation method. We also prove that the probability that Pn contains any given graph H as an induced subgraph is asymptotically 0 or or 1. Further we show that almost all perfect graphs are 2‐clique‐colorable, improving a result of Bacsó et al. from 2004; they are almost all Hamiltonian; they almost all have connectivity equal to their minimum degree; they are almost all in class one (edge‐colorable using Δ colors, where Δ is the maximum degree); and a sequence of independently and uniformly sampled perfect graphs of increasing size converges almost surely to the graphon .
FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO)
FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
