
Rationale An epidemic of low‐quality medicines continues to endanger patients worldwide. Detection of such ‘medicines’ requires low cost, ambient ionization sources coupled to fieldable mass spectrometers for optimum sensitivity and specificity. With the use of triboelectric nanogenerators (TENGs), the charge required to produce gas‐phase ions for mass analysis can be obtained without the need for high‐voltage electrical circuitry, simplifying and lowering the cost of next‐generation mass spectrometry instruments. Methods A sliding freestanding (SF) TENG was coupled to a toothpick electrospray setup for the purposes of testing if falsified medicines could be fingerprinted by this approach. Extracts from both genuine and falsified medicines were deposited on the toothpick and the SF TENG actuated to generate electrical charges, resulting in gas‐phase ions for both active pharmaceutical ingredients and excipients. Results Our previous work had shown that direct analysis in real time (DART) ambient mass spectrometry can identify the components of multiple classes of falsified antimalarial medicines. Experiments performed in this study show that a simple extraction into methanol along with the use of a SF TENG‐powered toothpick electrospray can provide similar detection capabilities, but with much simpler and rugged instrumentation, and without the need for compressed gases or high‐voltage ion source power supplies. Conclusions TENG toothpick MS allows for rapid analyte ion detection in a safe and low‐cost manner, providing robust sampling and ionization capabilities.
Research Articles
Research Articles
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
