
doi: 10.1002/qre.1414
handle: 11245/1.396672
Control charts are the most extensively used technique to detect the presence of special cause variations in processes. They can be classified into memory and memoryless control charts. Cumulative sum and exponentially weighted moving average control charts are memory‐type control charts as their control structures are developed in such a way that the past information is not ignored as it is done in the case of memoryless control charts, like the Shewhart‐type control charts. The present study is based on the proposal of a new memory‐type control chart for process dispersion. This chart is named as CS‐EWMA chart as its plotting statistic is based on a cumulative sum of the exponentially weighted moving averages. Comparisons with other memory charts used to monitor the process dispersion are done by means of the average run length. An illustration of the proposed technique is done by applying the CS‐EWMA chart on a simulated dataset. Copyright © 2012 John Wiley & Sons, Ltd.
519
519
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 55 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
