
doi: 10.1002/pst.1796
pmid: 27935199
AbstractIn many clinical trials, biological, pharmacological, or clinical information is used to define candidate subgroups of patients that might have a differential treatment effect. Once the trial results are available, interest will focus on subgroups with an increased treatment effect. Estimating a treatment effect for these groups, together with an adequate uncertainty statement is challenging, owing to the resulting “random high” / selection bias. In this paper, we will investigate Bayesian model averaging to address this problem. The general motivation for the use of model averaging is to realize that subgroup selection can be viewed as model selection, so that methods to deal with model selection uncertainty, such as model averaging, can be used also in this setting. Simulations are used to evaluate the performance of the proposed approach. We illustrate it on an example early‐phase clinical trial.
Clinical Trials as Topic, Models, Statistical, Research Design, Data Interpretation, Statistical, Uncertainty, Humans, Bayes Theorem, Computer Simulation, Selection Bias
Clinical Trials as Topic, Models, Statistical, Research Design, Data Interpretation, Statistical, Uncertainty, Humans, Bayes Theorem, Computer Simulation, Selection Bias
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 24 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
