<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The degradation in the liquid phase of rimsulfuron and its commercial 250 g kg−1 WG formulation (Titus®) was investigated. Photolysis reactions were carried out at 25 °C by a high-pressure mercury arc (Hg-UV) and a solar simulator (Suntest), while the hydrolysis rate was determined by keeping aqueous buffered samples in the dark. The effects of solvent and water pH on reaction kinetics were studied, and the results compared to literature data. Photoreactions of the commercial product in organic solvents were faster than pure rimsulfuron. Under simulated sunlight in water, the half-life for the photolysis reaction ranged from one to nine days at pH 5 and 9, respectively. The hydrolysis rate was as high as the photolysis rate, but decreased on increasing water pH. The main metabolite identified in neutral and alkaline conditions as well as in acetonitrile was N-[(3-ethylsulfonyl)-2-pyridinyl]-4,6-dimethoxy-2-pyridinamine, while N-(4,6-dimethoxy-2-pyrimidinyl)-N-[(3-(ethylsulfonyl)-2-pyridinyl)]urea and minor metabolites prevailed in acidic conditions. © 1999 Society of Chemical Industry
photolysis, hydrolysis, liquid phase, rimsulfuron, Suntest, Hg-UV-arc, hidrolysis, Titus, suntest
photolysis, hydrolysis, liquid phase, rimsulfuron, Suntest, Hg-UV-arc, hidrolysis, Titus, suntest
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 45 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |