Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Propellants Explosiv...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Propellants Explosives Pyrotechnics
Article . 1992 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
addClaim

Energetic Solid Fuels for Ducted Rockets (III)

Authors: N. Kubota; K. Miyata; T. Kuwahara; M. Mitsuno; I. Nakagawa;

Energetic Solid Fuels for Ducted Rockets (III)

Abstract

AbstractDucted rockets operate with the combustion of fuel‐rich gas generated in a primary combustor and the ram‐air induced from the atmosphere to a secondary combustor. Thus, the combustion performance depends on the mixing and reaction processes of the fuel‐rich gas and the air flow in the secondary combustor. The energetic solid fuels examined in this study consisted of ammonium perchlorate based composite propellants containing boron particles. The combustion efficiency of boron particles in the secondary combustor was determined as a function of air‐mixing process and air/fuel ratio. Two types of air‐inlet were used to evaluate the combustion of boron particles. Combustion tests conducted by direct connect flow indicate that the combustion efficiency increased significantly when a multi‐port consisting of two forward‐ports and two rear‐ports was used.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!