Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Queensland Universit...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Polymer International
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Polymer International
Article
License: CC BY
Data sources: UnpayWall
Polymer International
Article . 2022
Data sources: u:cris
versions View all 2 versions
addClaim

Maleimide‐styrene‐butadiene terpolymers: acrylonitrile‐butadiene‐styrene inspired photopolymers for additive manufacturing

Authors: Johannes Steindl; Katharina Ehrmann; Christian Gorsche; Ching‐Chung Huang; Thomas Koch; Patrick Steinbauer; Andreas Rohatschek; +5 Authors

Maleimide‐styrene‐butadiene terpolymers: acrylonitrile‐butadiene‐styrene inspired photopolymers for additive manufacturing

Abstract

Abstract The terpolymer acrylonitrile‐butadiene‐styrene (ABS) is a widely used thermoplastic material due to its excellent mechanical properties, especially high toughness. However, the monomer system of ABS cannot be feasibly photopolymerized due to its reactivity, opacity and monomer volatility. We show the transfer of an ABS microstructure to photopolymers via monomer systems designed to mimic ABS while remaining photopolymerizable. Acrylonitrile was substituted by more reactive and less volatile maleimides, of which the N substituent influences crosslinking considerably. Instead of styrene, less volatile derivatives were utilized as comonomers. Poly(butadiene) was introduced as cheap, readily available and non‐volatile rubber. The resulting maleimide‐styrene‐poly(butadiene) networks exhibit varying microphase separations and simultaneous transparency. While optimized materials cannot quite exhibit the yield strain of hot‐pressed ABS filament, their toughness partly exceeds that of ABS. Superior thermal stabilities and glass transition temperatures up to 190 °C were observed. Finally, stereolithographic printing of one tuned monomer system was conducted. © 2021 The Authors. Polymer International published by John Wiley & Sons Ltd on behalf of Society of Industrial Chemistry.

Countries
Austria, Austria, Australia
Keywords

TOUGH, VINYL-ESTER RESINS, 104016 Photochemie, microstructure, 540, maleimide, POLYMERIZATION, MOLECULAR-WEIGHT, styrene, poly(butadiene) rubber, 104016 Photochemistry, photopolymer, POLYMERS, AGENTS, additive manufacturing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green
hybrid