Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Numerical Methods for Partial Differential Equations
Article . 2024 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2024
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Semi‐implicit method of high‐index saddle dynamics and application to construct solution landscape

Semi-implicit method of high-index saddle dynamics and application to construct solution landscape
Authors: Yue Luo; Lei Zhang; Pingwen Zhang; Zhiyi Zhang; Xiangcheng Zheng;

Semi‐implicit method of high‐index saddle dynamics and application to construct solution landscape

Abstract

AbstractWe analyze the semi‐implicit scheme of high‐index saddle dynamics, which provides a powerful numerical method for finding the any‐index saddle points and constructing the solution landscape. Compared with the explicit schemes of saddle dynamics, the semi‐implicit discretization relaxes the step size and accelerates the convergence, but the corresponding numerical analysis encounters new difficulties compared to the explicit scheme. Specifically, the orthonormal property of the eigenvectors at each time step could not be fully employed due to the semi‐implicit treatment, and computations of the eigenvectors are coupled with the orthonormalization procedure, which further complicates the numerical analysis. We address these issues to prove error estimates of the semi‐implicit scheme via, for example, technical splittings and multi‐variable circulating induction procedure. We further analyze the convergence rate of the generalized minimum residual solver for solving the semi‐implicit system. Extensive numerical experiments are carried out to substantiate the efficiency and accuracy of the semi‐implicit scheme in constructing solution landscapes of complex systems.

Related Organizations
Keywords

saddle point, saddle dynamics, solution landscape, error estimate, Numerical Analysis (math.NA), GMRES, Numerical methods for initial value problems involving ordinary differential equations, 37M05, 37N30, 65L20, semi-implicit scheme, FOS: Mathematics, Mathematics - Numerical Analysis, Numerical investigation of stability of solutions to ordinary differential equations, Error bounds for numerical methods for ordinary differential equations

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green
Related to Research communities