
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>doi: 10.1002/num.20252
AbstractWe improve the performance of the Perfectly Matched Layer (PML) by using an automatic hp‐adaptive discretization. By means of hp‐adaptivity, we obtain a sequence of discrete solutions that converges exponentially to the continuum solution. Asymptotically, we thus recover the property of the PML of having a zero reflection coefficient for all angles of incidence and all frequencies on the continuum level. This allows us to minimize the reflections from the discrete PML to an arbitrary level of accuracy while retaining optimal computational efficiency. Since our hp‐adaptive scheme is automatic, no interaction with the user is required. This renders tedious parameter tuning of the PML obsolete. We demonstrate the improvement of the PML performance by hp‐adaptivity through numerical results for acoustic, elastodynamic, and electromagnetic wave‐propagation problems in the frequency domain and in different systems of coordinates. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 23: 832–858, 2007
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 56 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
